Web Search Result Clustering based on Cuckoo Search and Consensus Clustering

نویسندگان

  • Mansaf Alam
  • Kishwar Sadaf
چکیده

Clustering of web search result document has emerged as a promising tool for improving retrieval performance of an Information Retrieval (IR) system. Search results often plagued by problems like synonymy, polysemy, high volume etc. Clustering other than resolving these problems also provides the user the easiness to locate his/her desired information. In this paper, a method, called WSRDC-CSCC, is introduced to cluster web search result using cuckoo search meta-heuristic method and Consensus clustering. Cuckoo search provides a solid foundation for consensus clustering. As a local clustering function, k-means technique is used. The final number of cluster is not depended on this k. Consensus clustering finds the natural grouping of the objects. The proposed algorithm is compared to another clustering method which is based on cuckoo search and Bayesian Information Criterion. The experimental results show that proposed algorithm finds the actual number of clusters with great value of precision, recall and F-measure as compared to the other method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Web Document Clustering Using Cuckoo Search Clustering Algorithm based on Levy Flight

The World Wide Web serves as a huge widely distributed global information service center. The tremendous amount of information on the web is improving day by day. So, the process of finding the relevant information on the web is a major challenge in Information Retrieval. This leads the need for the development of new techniques for helping users to effectively navigate, summarize and organize ...

متن کامل

Improved COA with Chaotic Initialization and Intelligent Migration for Data Clustering

A well-known clustering algorithm is K-means. This algorithm, besides advantages such as high speed and ease of employment, suffers from the problem of local optima. In order to overcome this problem, a lot of studies have been done in clustering. This paper presents a hybrid Extended Cuckoo Optimization Algorithm (ECOA) and K-means (K), which is called ECOA-K. The COA algorithm has advantages ...

متن کامل

Clustering of web search results based on the cuckoo search algorithm and Balanced Bayesian Information Criterion

The clustering of web search results or web document clustering has become a very interesting research area among academic and scientific communities involved in information retrieval. Web search result clustering systems, also called Web Clustering Engines, seek to increase the coverage of documents presented for the user to review, while reducing the time spent reviewing them. Several algorit...

متن کامل

مرور مؤثر نتایج جستجوی تصاویر با تلخیص بصری و متنوع از طریق خوشه‌بندی

With unprecedented growth in production of digital images and use of multimedia references, requirement of image and subject search has been increased. Systematic processing of this information is a basic prerequisite for effective analysis, organization and management of it. Likewise, large collections of images have been made available on the Web and many search engines have provided the poss...

متن کامل

An improved opposition-based Crow Search Algorithm for Data Clustering

Data clustering is an ideal way of working with a huge amount of data and looking for a structure in the dataset. In other words, clustering is the classification of the same data; the similarity among the data in a cluster is maximum and the similarity among the data in the different clusters is minimal. The innovation of this paper is a clustering method based on the Crow Search Algorithm (CS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1503.06609  شماره 

صفحات  -

تاریخ انتشار 2015